The Vishera Review: AMD FX-8350, FX-8320, FX-6300 and FX-4300 Tested
by Anand Lal Shimpi on October 23, 2012 12:00 AM ESTLast year's launch of AMD's FX processors was honestly disappointing. The Bulldozer CPU cores that were bundled into each Zambezi chip were hardly power efficient and in many areas couldn't significantly outperform AMD's previous generation platform. Look beyond the direct AMD comparison and the situation looked even worse. In our conclusion to last year's FX-8150 review I wrote the following:
"Single threaded performance is my biggest concern, and compared to Sandy Bridge there's a good 40-50% advantage the i5 2500K enjoys over the FX-8150. My hope is that future derivatives of the FX processor (perhaps based on Piledriver) will boast much more aggressive Turbo Core frequencies, which would do wonders at eating into that advantage."
The performance advantage that Intel enjoyed at the time was beyond what could be erased by a single generation. To make matters worse, before AMD could rev Bulldozer, Intel already began shipping Ivy Bridge - a part that not only increased performance but decreased power consumption as well. It's been a rough road for AMD over these past few years, but you have to give credit where it's due: we haven't seen AMD executing this consistently in quite a while. As promised we've now had multiple generations of each platform ship from AMD. Brazos had a mild update, Llano paved the way for Trinity which is now shipping, and around a year after Zambezi's launch we have Vishera: the Piledriver based AMD FX successor.
At a high level, Vishera swaps out the Bulldozer cores from Zambezi and replaces them with Piledriver. This is the same CPU core that is used in Trinity, but it's optimized for a very different purpose here in Vishera. While Trinity had to worry about working nicely in a laptop, Vishera is strictly a high-end desktop/workstation part. There's no on-die graphics for starters. Clock speeds and TDPs are also up compared to Trinity.
CPU Specification Comparison | ||||||||
CPU | Manufacturing Process | Cores | Transistor Count | Die Size | ||||
AMD Vishera 8C | 32nm | 8 | 1.2B | 315mm2 | ||||
AMD Zambezi 8C | 32nm | 8 | 1.2B | 315mm2 | ||||
Intel Ivy Bridge 4C | 22nm | 4 | 1.4B | 160mm2 | ||||
Intel Sandy Bridge E (6C) | 32nm | 6 | 2.27B | 435mm2 | ||||
Intel Sandy Bridge E (4C) | 32nm | 4 | 1.27B | 294mm2 | ||||
Intel Sandy Bridge 4C | 32nm | 4 | 1.16B | 216mm2 | ||||
Intel Lynnfield 4C | 45nm | 4 | 774M | 296mm2 | ||||
Intel Sandy Bridge 2C (GT1) | 32nm | 2 | 504M | 131mm2 | ||||
Intel Sandy Bridge 2C (GT2) | 32nm | 2 | 624M | 149mm2 |
Vishera is still built on the same 32nm GlobalFoundries SOI process as Zambezi, which means there isn't much room for additional architectural complexity without ballooning die area, and not a whole lot of hope for significantly decreasing power consumption. As a fabless semiconductor manufacturer, AMD is now at GF's mercy when it comes to moving process technology forward. It simply has to make 32nm work for now. Piledriver is a light evolution over Bulldozer, so there's actually no substantial increase in die area compared to the previous generation. Cache sizes remain the same as well, which keeps everything roughly the same. These chips are obviously much larger than Intel's 22nm Ivy Bridge parts, but Intel has a full node advantage there which enables that.
Piledriver is a bit more power efficient than Bulldozer, which enables AMD to drive Vishera's frequency up while remaining in the same thermal envelope as Zambezi. The new lineup is in the table below:
CPU Specification Comparison | ||||||||||
Processor | Codename | Cores | Clock Speed | Max Turbo | L2/L3 Cache | TDP | Price | |||
AMD FX-8350 | Vishera | 8 | 4.0GHz | 4.2GHz | 8MB/8MB | 125W | $199 | |||
AMD FX-8150 | Zambezi | 8 | 3.6GHz | 4.2GHz | 8MB/8MB | 125W | $183 | |||
AMD FX-8320 | Vishera | 8 | 3.5GHz | 4.0GHz | 8MB/8MB | 125W | $169 | |||
AMD FX-8120 | Zambezi | 8 | 3.1GHz | 4.0GHz | 8MB/8MB | 125W | $153 | |||
AMD FX-6300 | Vishera | 6 | 3.5GHz | 4.1GHz | 6MB/8MB | 95W | $132 | |||
AMD FX-6100 | Zambezi | 6 | 3.3GHz | 3.9GHz | 6MB/8MB | 95W | $112 | |||
AMD FX-4300 | Vishera | 4 | 3.8GHz | 4.0GHz | 4MB/4MB | 95W | $122 | |||
AMD FX-4100 | Zambezi | 4 | 3.6GHz | 3.8GHz | 4MB/4MB | 95W | $101 |
The table above says it all. TDPs haven't changed, cache sizes haven't changed and neither have core counts. Across the board Vishera ships at higher base frequencies than the equivalent Zambezi part, but without increasing max turbo frequency (in the case of the 8-core parts). The 6 and 4 core versions get boosts to both sides, without increasing TDP. In our Trinity notebook review I called the new CPU core Bulldozed Tuned. The table above supports that characterization.
It's also important to note that AMD's pricing this time around is far more sensible. While the FX-8150 debuted at $245, the 8350 drops that price to $199 putting it around $40 less than the Core i5 3570K. The chart below shows where AMD expects all of these CPUs to do battle:
AMD's targets are similar to what they were last time: Intel's Core i5 and below. All of the FX processors remain unlocked and ship fully featured with hardware AES acceleration enabled. Most Socket-AM3+ motherboards on the market today should support the new parts with nothing more than a BIOS update. In fact, I used the same ASUS Crosshair V Formula motherboard I used last year (with a much newer BIOS) for today's review:
The Test
For more comparisons be sure to check out our performance database: Bench.
Motherboard: | ASUS Maximus V Gene (Intel Z77) ASUS Crosshair V Formula (AMD 990FX) |
Hard Disk: | Intel X25-M SSD (80GB) Crucial RealSSD C300 OCZ Agility 3 (240GB) Samsung SSD 830 (512GB) |
Memory: | 4 x 4GB G.Skill Ripjaws X DDR3-1600 9-9-9-20 |
Video Card: | ATI Radeon HD 5870 (Windows 7) NVIDIA GeForce GTX 680 (Windows 8) |
Desktop Resolution: | 1920 x 1200 |
OS: | Windows 7 x64/Windows 8 Pro x64 |
250 Comments
View All Comments
CeriseCogburn - Tuesday, October 30, 2012 - link
more speculation from mr gnuThis of course caps it all off - the utter amd fanboy blazing in our faces, once again the FANTASY FUTURE is the big amd win :
" If they make a server chip based on that technology, with high performance-per-watt and 12 or more cores, that is very well within realms of possible and could very well be a GREAT winner in that market. "
LOL - Why perhaps you should be consulting or their next COO or CEO ?
I'm telling you man, that is why, that is why.
Siana - Thursday, October 25, 2012 - link
It looks like extra 10W in idle test could be largely or solely due to mainboard. There is no clear evidence to what extent and whether at all the new AMD draws more power than Intel at idle.A high end CPU and low utilization (mostly idle time) is in fact a very useful and common case. For example, as a software developer, i spend most time reading and writing code (idle), or testing the software (utilization: 15-30% CPU, effectively two cores tops). However, in between, software needs to be compiled, and this is unproductive time which i'd like to keep as short as possible, so i am inclined to chose a high-end CPU. For GCC compiler on Linux, new AMD platform beats any i5 and a Sandy Bridge i7, but is a bit behind Ivy Bridge i7.
Same with say a person who does video editing, they will have a lot of low-utilization time too just because there's no batch job their system could perform most of the time. The CPU isn't gonna be the limiting factor while editing, but when doing a batch job, it's usually h264 export, they may also have an advantage from AMD.
In fact every task i can think of, 3D production, image editing, sound and music production, etc, i just cannot think of a task which has average CPU utilization of more than 50%, so i think your figure of 80Wh/day disadvantage for AMD is pretty much unobtainable.
And oh, noone in their right mind runs an internet-facing server as their desktop computer, for a variety of good reasons, so while Linux is easy to use as a server even at home, it ends up a limited-scope, local server, and again, the utilization will be very low. However, you are much less likely to be bothered by the services you're providing due to the sheer number of integer cores. In case you're wondering, in order to saturate a well-managed server running Linux based on up to date desktop components, no connection you can get at home will be sufficient, so it makes sense to co-locate your server at a datacenter or rent theirs. Datacenters go to great lengths to not be connected to a single point, which in your case is your ISP, but to have low-latency connections to many Internet nodes, in order to enable the servers to be used efficiently.
As for people who don't need a high end system, AMD offers better on-die graphics accelerator and at the lower end, the power consumption difference isn't gonna be big in absolute terms.
And oh, "downloading files" doesn't count as "complex stuff", it's a very low CPU utilization task, though i don't think this changes much apropos the argument.
And i don't follow that you need a 125$ mainboard for AMD, 60$ boards work quite well, you generally get away with cheaper boards for AMD than for Intel obviously even when taking into account somewhat higher power-handling capacity of the board needed.
The power/thermal advantage of Intel of course extends to cooling noise, and it makes sense to pay extra to keep the computer noise down. However, the CPU is just so rarely the culprit any longer, with GPU of a high-end computer being the noise-maker number one, vibrations induced by harddisk number two, and only to small extent the CPU and its thermal contribution.
Hardly anything of the above makes Piledriver the absolute first-choice CPU, however it's not a bad choice still.
Finally, the desktop market isn't so important, the margins are terrible. The most important bit for now for AMD is the server market. Obviously the big disadvantage vs. Intel with power consumption is there, and is generally important in server market, however with virtualization, AMD can avoid sharp performance drop-off and allow to deploy up to about 1/3rd more VMs per CPU package because of higher number of integer cores, which can offset higher power consumption per package per unit of performance. I think they're onto something there, they have a technology they use on mobile chips now which allows them to sacrifice top frequency but reduce surface area and power consumption. If they make a server chip based on that technology, with high performance-per-watt and 12 or more cores, that is very well within realms of possible and could very well be a GREAT winner in that market.
Kjella - Tuesday, October 23, 2012 - link
Except the "Any CPU is fine" market isn't about $200 processors, Intel or AMD. That market is now south of $50 and making them pennies with Celerons and Atoms competing with AMD A4 series. You're not spending this kind of money on a CPU unless performance matters. Funny that you're dissing the overclockability of the IVB while pushing a processor that burns 200W when overclocked, you honestly want THAT in your rig instead.Honestly, while this at least puts them back in the ring it can't be that great for AMDs finances. They still have the same die size and get to raise prices of their top level process or from $183 to $199, yay. But I guess they have to do something to try bringing non-APU sales back up, Bulldozer can not have sold well at all. And I still fear Haswell will knock AMD out of the ring again...
Jaybus - Tuesday, October 23, 2012 - link
I agree. I would think they may do better with the 16-core socket G34 Opterons with 4 RAM channels, particularly if they can get down to 95W at 2.5 GHz. A 2-socket board gives 32 cores with lots of RAM per 2U server chassis. This should work nicely for high availability virtualized clusters. In this environment, it is better to have more cores in the same power envelope than faster per-core performance, because the virtual machines are independent from one another. I think Piledriver can compete in this environment much better than in the non-APU desktop/workstation market.Sufo - Tuesday, October 23, 2012 - link
"If all you do is benchmark all day long and you have money to burn, blow it on an Intel CPU"Uh, I'd happily take one to play games on my "Windoze" machine.
Idiot.
cfaalm - Tuesday, October 23, 2012 - link
The thing is that people would want a balanced performance. Balanced between single and multithreaded that is. Now Piledriver does a lot better than Bulldozer here, but I think Intel offers a better balance still. As much as I would like to build a new AMD system, I think it will be Intel this time around.lmcd - Tuesday, October 23, 2012 - link
What class of gaming are you looking at? If you're looking at even midrange gaming, your best bet is an A10 + a 6670 (runs $60-$70 average and $90 for low profile). Really a great gaming value option.just4U - Tuesday, October 23, 2012 - link
lmcd,I just did that for our secondary machine and put in a 6850. Works quite well... aside from bios issues on a brand new board chipset that is. Considering prices on the 7750/70 I'd probably opt out for one of those at $30 more then any of the 6x series. I'd also have probably picked up one of these new cpu's over a A10 given the oportunity.
CeriseCogburn - Tuesday, October 30, 2012 - link
LMAO at fanboy system frikk failure.... hahahahha "adise from bios issues" and uhh.. the "crashing" .. and uhh, I'd buy not the 6850, but 7770, and uh... not the A10 but one of these...LOL - there is the life of the amd fanboy
'nar - Tuesday, October 23, 2012 - link
I frequently have two or three high-cpu apps running at a time, so would AMD be better in this case? Even though each app runs better on Core-i5 individually?I shoot for a do-it-all system. I run video encode, get bored and start a game. I run malware scans on external drives and backup other drives into compressed images. Perhaps if you ran h.264 encodes while you ran another benchmark, like Skyrim, or the browser bench?
Oh, typo on page 6, I think "gian" where you meant gain.