Advanced Synthetic Tests

Our benchmark suite includes a variety of tests that are less about replicating any real-world IO patterns, and more about exposing the inner workings of a drive with narrowly-focused tests. Many of these tests will show exaggerated differences between drives, and for the most part that should not be taken as a sign that one drive will be drastically faster for real-world usage. These tests are about satisfying curiosity, and are not good measures of overall drive performance. For more details, please see the overview of our 2021 Consumer SSD Benchmark Suite.

Whole-Drive Sequential Fill

Pass 1
Pass 2

Some of our other tests have shown a few signs that the 870 EVO's write performance can drop when the SLC cache runs out, but this straightforward sequential write pass over the entire drive doesn't reveal any such behavior. The 870 EVO's sequential write performance is extremely consistent, even on the second write pass.

Sustained 128kB Sequential Write (Power Efficiency)
Average Throughput for last 16 GB Overall Average Throughput

Due to the excellent performance consistency, the Samsung 870 EVOs edge out the other SATA drives with marginally higher average sequential write speeds. The entry-level NVMe drives end up much worse off than the mainstream SATA drives once their caches run out, but the more mainstream NVMe drive blows them all away.


Working Set Size

As expected, the Samsung 870 EVO's random read performance shows basically no variation across a range of working set sizes, and that read performance is at least a little bit faster than any of the other SATA drives or the entry-level NVMe drives.


Performance vs Block Sizes

Random Read
Random Write
Sequential Read
Sequential Write

There are no particular surprises in how the Samsung 870 EVO handles IOs of different block sizes. Unlike some drives, it has no trouble with sub-4kB IOs. It offers moderate improvements over the 860 EVO for mid-sized random reads (up to about 128kB). The one negative is that for writes we again see more inconsistency from the 870 EVO than the 860 EVO when testing an 80% full drive. The simple whole-drive sequential write test may not have been able to reveal any SLC caching troubles, but it does seem clear that the caching behavior has some performance regressions for more complicated workloads on a drive that's more well-used—though it's still unlikely to matter for any typical real-world consumer workload.

Synthetic Tests: Basic IO Patterns Mixed IO Performance and Idle Power Management


View All Comments

  • Eliadbu - Wednesday, February 17, 2021 - link

    It kills me that there are no U.2 drives that I'm aware of aimed for consumer market, all you can find are enterprise oriented drives, plus other than select motherboards few have U.2 connector and you then need to use some silly m.2 adapters. I wished that U.2 would have replaced SATA (at least moderately) but I don't see this happening anytime soon in consumer space. Reply
  • Jorgp2 - Wednesday, February 17, 2021 - link

    SAS connectors provide power and up to 4x PCI-E lanes. Reply
  • Kevin G - Wednesday, February 17, 2021 - link

    At the time SATA was developed, it made sense. Times of course have changed with SATA now feeling more of a legacy technology. It'll continue to hang around as the protocols it was built upon (AHCI etc.) are present in legacy OS where as NVMe support may not be there. Similarly there is no support for removable media though leveraging USB for that now is trivial. Main barrier for the formal death of SATA is still cost as NVMe still carries a slight premium over SATA and consumer systems have limited PCIe connectivity. Reply
  • Glaurung - Wednesday, February 17, 2021 - link

    The main barrier for the formal death of SATA are hundreds of millions of perfectly usable older systems that don't support NVME or have limited NVME slots. Reply
  • Qasar - Wednesday, February 17, 2021 - link

    " Main barrier for the formal death of SATA is still cost as NVMe still carries a slight premium over SATA and consumer systems have limited PCIe connectivity. "

    i think you might be also forgetting the aspect of the space requirements of the nvme connector as well.
  • Lord of the Bored - Wednesday, February 17, 2021 - link

    I've always thought SATA was a mistake.
    Removing the ability to chain multiple drives made for an ugly cabling situation, and the connectors are flimsy as hell. The new power connector in particular served no purpose whatsoever aside from annoyance.

    If it had used more robust connectors and allowed chaining drives, it would've been fantastic. But that would've been to much like the right decision for them to entertain it.
  • Glaurung - Wednesday, February 17, 2021 - link

    SATA on the desktop and in NAS boxes is still very much alive, TYVM.

    Sata SSDs will continue to be made and sold as long as there are older computers in use that have a SATA bay in them. My main computer only has 1 NVME slot, but it also has a SATA bay. WIthout that SATA bay I'd have to have all my files crammed onto on a single SSD.
  • Kamen Rider Blade - Wednesday, February 17, 2021 - link

    The technology to update SATA is there, it just takes a bit of will power from the SATA group to borrow the SAS speeds and bring it to the consumers.

    The SATA connector is far better suited for "Hot Swap" and M.2 was never designed for "Hot Swap" capabilities.
  • powerarmour - Wednesday, February 17, 2021 - link

    No, we'll require SATA for bulk storage for a good few years yet.
    How many M.2 only NAS systems are there?
  • CaedenV - Wednesday, February 17, 2021 - link

    SATA is still perfectly fine for old spinning rust drives. Sure the burst performance could be better with a faster connection... but how often is that needed? For sustained data transfers SATA3 is still faster than any spinning drives on the market that cap out at 150-200MBps on a good day. Reply

Log in

Don't have an account? Sign up now