If you are going to use the ASUS PQ321Q, you’re going to want DisplayPort 1.2 support. HDMI will work, but it’ll be choppy with its 30Hz refresh rate. If you have a video card with dual HDMI 1.4 outputs, you can use both of them to drive it at 60Hz if your video driver supports it. DisplayPort 1.2 allows for Multi-Stream Transport (MST) support, letting you drive two displays with a single DP cable. But why does that matter if the ASUS is your only monitor? Because to get the full 60Hz refresh rate out of it, DisplayPort needs to see it as a pair of 1920x2160 monitors that each get their own signal.

The ASUS has MST mode disabled by default. With my NVIDIA GTX 660 Ti I had to manually enable it in the monitor for it to turn on. I’ve been told that with ATI or Intel GPUs over DisplayPort 1.2 it is automatic, but I don’t have those to test with. Once enabled, it quickly went from 30 Hz to 60 Hz while staying at 3840x2160 resolution.

Since I run multiple displays like most people, this seemed to be an ideal time to test out Windows 8.1 and its ability to offer individual DPI scaling on monitors. For this test I used the ASUS PQ321Q, connected over DispayPort, and a Nixeus VUE 30 (review forthcoming) connected over DVI running at 2560x1600. With a single universal setting, you use a percentage setting for scaling in Windows 8.1. With individual control, you use a slider more like on a Retina MacBook Pro. The percentage is hidden, which I dislike. I don’t understand why we have a different way to select the scaling level if you have two monitors versus one. Perhaps it is a beta issue, but I think they should be uniform.

Moving beyond that, when I attempted to scale the PQ321Q, I had an image that was still fuzzy instead of sharp. Thankfully a driver update (as 4K MST panels are new) fixed this issue quickly. The independent display scaling in Windows 8.1 still didn’t work the way I wanted it to. The choices are unclear, including which monitor you are adjusting, and I never could get it setup exactly how I wanted it. I wound up setting it to 150% for both displays and dealing with my 27” running with larger icons than I prefer.

Now I have an effective 2560x1440 desktop, only everything is sharp. Amazingly sharp. It is like moving from my iPhone 3G to the iPhone 4 and its retina screen. The text as I write this in Word is crisp and clear, and editing gigantic spreadsheet in Excel is much easier when the cells are so easy to read. Unfortunately not every application in Windows plays well with DPI scaling.

Chrome is scaled 150% as Windows asked, but it is hazy and blurry. Disabling DPI scaling for the application and then scaling to 150% inside Chrome produces crisp, clear text. Firefox also didn’t scale automatically, but it has a setting to adjust to make it follow the Windows DPI scaling rules. Once set, Firefox looks very nice and crisp. For most people, that setting should already be set to follow DPI scaling.

Finding a chat client that works well is a challenge. Both Pidgin and Trillian don’t do DPI scaling and are fuzzy by default. Another app that had issues is Steam. Right-clicking in the System Tray icon brought up a menu in the middle of the screen, where it would be without DPI scaling. The reality is that some apps are great and support DPI scaling, and some need work, just like when the retina MacBook Pro was released. Evernote looks great, but Acrobat is a fuzzy mess. This is all a bit of growing pains, but I find myself disabling DPI scaling on applications that don’t support it because I prefer tiny and sharp to fuzzy and large.

Because the 2560x1440 resolution is what I’m used to with my usual 27” monitor, I found there to be no real difference in how I used the ASUS monitor. I typically split items to different sides of the screen, with Word on the right and Evernote on the left as I type this. The application that benefitted for me was image editing. Being able to fit more on the screen, or zoom in to higher levels, made working with images on the ASUS better than on a 27” of the same effective resolution. I don’t do that much image editing, but for the work I have done it has been wonderful.

You’ll also quickly find out how much people need to go back and fix up programs or websites to use images and text separately. Text combined in an image scales very poorly, but is often easier than doing proper layout for two separate elements. I feel a bit bad for all the developers that need to go back to fix everything to work with high-DPI screens, but that time has come.

The only way to sum up daily use of the ASUS PQ321Q is “awesome”. It’s not perfect, but much of that is the fault of Windows or other programs and websites. When you have something that can scale and look correct, it is amazing how much the extra pixel density and sharpness helps. Yes, this is the future for displays, and we are entering the transition period to get there.

Introduction, Design and Specs Internal Scaling, Brightness and Contrast
Comments Locked


View All Comments

  • cheinonen - Tuesday, July 23, 2013 - link

    And then after that you're going to sell far fewer, so your profit margins are going to have to change to adapt for that as well, and it really winds up making them far more expensive. It really is the best looking display I've used and the one I most want to keep around after the review period. Companies should be rewarded for taking the risk in releasing niche products that help push the market forward, and really are a breakthrough.
  • Sivar - Tuesday, July 23, 2013 - link

    Ideally they can cut 3 good 15" displays from the failed 30" material.
    Whether the process actually works this way, I don't know.
  • madmilk - Tuesday, July 23, 2013 - link

    It doesn't work that way. That's like saying Intel can cut a quad core CPU into two dual core CPUs.
  • sunflowerfly - Wednesday, July 24, 2013 - link

    Where do you think Intel gets lower core count CPU's? They actually do disable cores and sell them for lower spec parts.
  • DanNeely - Thursday, July 25, 2013 - link

    They've done so in the past, and IIRC still do bin GPU levels that way; but in all their recent generations the dual and quad core CPUs that make up 99% of their sales have been separate dies.

    Your analogy breaks down even for the handful of exceptions (single core celeron, quadcore LGA2011); since the LCD equivalent would be to sell you a 15" screen in a 30" case with a huge asymmetric bezel covering 3/4ths of the panel area.
  • Calista - Thursday, July 25, 2013 - link

    It's not just the parts getting more expensive to manufacture, it's also because the manufacturer knows it's a high-margin product. The difference in price for an APS-C vs an FF sensor is on the order of a magnitude smaller than the difference in price between the complete cameras, i.e. $500 vs $2500, even if the FF camera obviously also include faster processing, higher quality body etc.
  • YazX_ - Tuesday, July 23, 2013 - link

    companies would like like to milk users as its brought to Desktop marketed as NEW TECH, this is the only reason why its very pricey, and dont forget that on the next months other companies will bring their products into competition which will help greatly in reduce the prices.
  • Fleeb - Tuesday, July 23, 2013 - link

    This reply is better than yours: http://www.anandtech.com/comments/7157/asus-pq321q...
  • madmilk - Tuesday, July 23, 2013 - link

    No worries, there's a 4K 39" TV on Amazon for $700. Since that TV has the same number of pixels and isn't a whole lot bigger, I think we will soon be seeing these 32" displays fall into that sub-$1000 range as well.
  • peterfares - Wednesday, July 24, 2013 - link

    That screen is lower quality and doesn't have an input capable of driving it at 60Hz at 4K

Log in

Don't have an account? Sign up now