7th Generation New Features

One of the big questions regarding the launch of Intel’s 7th Generation of CPUs was around what extra features the new platform brings, especially if there isn’t any clock-for-clock performance improvement. As with our other Kaby Lake reviews, here we explain the main two: Speed Shift v2 and Optane Memory support.

Speed Shift v2

For the Intel’s 6th Generation of processors, Skylake, they introduced Speed Shift (v1). This was a feature that, at a high level, gave control of the voltage/frequency curve from the operating system to the processor. Using a series of internal metrics, such as instruction analysis and frequency, the CPU would automatically adjust the voltage and frequency of the processor as required. This afforded two major benefits: one, with the CPU in control it has access to many more points on the curve compared to the OS which is limited to specific P-states on the processor.

The second benefit is the speed of transition. A processor that can ramp up to a high frequency quickly and then drop down as needed can get through instructions quicker but also save power. Imagine driving a car, and having to wait 60 seconds to change a gear – it’s that sort of analogy.

What Speed Shift v2 does in the Kaby Lake family, compared to v1 in Skylake, is manage those transitions to higher frequency faster. Before Speed Shift, transitions from idle to peak turbo were on the order of 100 milliseconds, and Speed Shift v1 took that to 30 milliseconds (with a good base established within 15). Speed Shift v2 means that peak performance from idle now happens in 10-15 milliseconds total. This means that interactions with the OS, such as touch, or actions that rely on low latency, can occur within a couple of frames on a 60 Hz display.

The benefit of Speed Shift lies a lot in touch devices, which perhaps doesn’t affect the desktop Kaby Lake processors in this review, but also in web interactions. A lot of web work is stop and start, such as scrolling or javascript functions.

There is one caveat however – Speed Shift currently only works in Windows 10. It requires a driver which is automatically in the OS (v2 doesn’t need a new driver, it’s more a hardware update), but this limitation does mean that Linux and macOS do not benefit from it. I would be hard pressed to not imagine that Apple and Intel were not working on a macOS driver, but as yet we have not had confirmation that one exists.

Optane Memory Support

The latest memory technology to hit prime time is Intel and Micron’s 3D XPoint. This is a non-volatile form of data storage that is bit addressable and can be used as DRAM or storage. Despite being at least a decade in the making, and being formally announced in 2014, it is still yet to show up commercially as it is still being developed. Intel plans to create 3D XPoint DRAM that is slightly slower than normal DRAM but both denser (more of it) and non-volatile (keeps the data after power loss, saves power altogether), as well as 3D XPoint Storage that is faster than standard NAND flash, and more configurable. It the scheme of things, we expect the storage based products to hit the market first.

Intel, as far as we can tell, is set to release two main classes of product: Optane DRAM to be pin-compatible with DDR4 and require Optane DRAM enabled processors, and Optane SSDs which should work with any PCIe storage interface. ‘Optane Memory’ however, is something a little different. Based on pre-briefings, Optane Memory is certainly not Optane SSD we were told, but rather a storage cache for mechanical hard-drives. We’ve had this before with NAND flash drives, using Intel’s Rapid Storage Technology, and it seems that Kaby Lake and 200-series chipsets will support a new version of RST for PCIe based storage. But because this is caching drive, such as the 16GB Optane Memory drives in Lenovo’s upcoming notebooks, and not Optane SSD, might lead us to believe that ‘Optane Memory’ drives are not designed to be directly user addressable.

All that being said, Intel has stated that Optane Memory standalone drives should hit the market nearer Q3 for general consumer use, which is more in-line with what we might expect to see with Optane SSDs in the enterprise space.

The Intel Core i3-7350K (60W) Review Test Bed and Setup
Comments Locked

186 Comments

View All Comments

  • Michael Bay - Saturday, February 4, 2017 - link

    >competition
    >AMD
  • Ranger1065 - Sunday, February 5, 2017 - link

    You are such a twat.
  • Meteor2 - Sunday, February 5, 2017 - link

    Ignore him. Don't feed trolls.
  • jeremynsl - Friday, February 3, 2017 - link

    Please consider abandoning the extreme focus on average framerates. It's old-school and doesn't really reflect the performance differences between CPUs anymore. Frame-time variance and minimum framerates are what is needed for these CPU reviews.
  • Danvelopment - Friday, February 3, 2017 - link

    Would be a good choice for a new build if the user needs the latest tech, but I upgraded my 2500K to a 3770 for <$100USD.

    I run an 850 for boot, a 950 for high speed storage on an adapter (thought it was a good idea at the time but it's not noticeable vs the 850) and an RX480.

    I don't feel like I'm missing anything.
  • Barilla - Friday, February 3, 2017 - link

    "if we have GPUs at 250-300W, why not CPUs?"

    I'm very eager to read a full piece discussing this.
  • fanofanand - Sunday, February 5, 2017 - link

    Those CPUs exist but don't make sense for home usage. Have you noticed how hard it is to cool 150 watts? Imagine double that. There are some extremely high powered server chips but what would you do with 32 cores?
  • abufrejoval - Friday, February 3, 2017 - link

    I read the part wasn't going to be available until later, did a search to confirm and found two offers: One slightly more expensive had "shipping date unknown", another slightly cheaper read "ready to ship", so that's what I got mid-January, together with a Z170 based board offering DDR3 sockets, because it was to replace an A10-7850K APU based system and I wanted to recycle 32GB of DDR3 RAM.

    Of course it wouldn't boot, because 3 out of 3 mainboards didn't have KabyLake support in the BIOS. Got myself a Skylake Pentium part to update the BIOS and returned that: Inexcusable hassle that, for me, the dealer and hopefully for the manufacturers which had advertised "Kaby Lake" compatibility for moths, but shipped outdates BIOS versions.

    After that this chips runs 4.2GH out of the box and overclocks to 4.5 without playing with voltage. Stays cool and sucks modest Watts (never reaching 50W according to the onboard sensors, which you can't really trust, I gather).

    Use case is a 24/7 home-lab server running quite a mix of physical and virtual workloads on Win 2008R2 and VMware workstation, mostly idle but with some serious remote desktop power, Plex video recoding ummp if required and even a game now and then at 1080p.

    I want it to rev high on sprints, because I tend to be impatient, but there is a 12/24 core Xeon E5 at 3 GHz and a 4/8 Xeon E3 at 4GHz sitting next to it, when I need heavy lifting and torque: Those beasts are suspended when not in use.

    Sure enough, it is noticible snappier than the big Xeon 12 core on desktop things and still much quieter than the Quad, while of course any synthetic multi-core benchmark or server load leaves this chip in the dust.

    I run it with an Nvidia GTX 1050ti, which ensures a seamless experience with the Windows 7 generation Sever 2008R2 on all operating systems, including CentOS 7 virtual or physical which is starting to grey a little on the temples, yet adds close to zero power on idle.

    At 4.2 GHz the Intel i3-7350K HT dual is about twice as fast as the A10-7850K integer quad at the same clock speed (it typically turbos to 4.2 GHz without any BIOS OC pressure) for all synthetic workloads I could throw at it, which I consider rather sad (been running AMD and Intel side by side for decades).

    I overclocked mine easily to 4.8 GHz and even to 5 GHz with about 1.4V and leaving the uncore at 3.8 GHz. It was Prime95 stable, but my simple slow and quiet Noctua NH-L9x65 couldn't keep temperatures at safe levels so I stopped a little early and went back to an easy and cool 4.6 GHz at 1.24V for "production".

    I'm most impressed running x265 video recodes on terabytes of video material at 800-1200FPS on this i3-7350K/GTX 1050ti combo, which seems to leave both CPU and GPU oddly bored and able to run desktop and even gaming workloads in parallel with very little heat and noise.

    The Xeon monsters with their respective GTX 1070 and GTX 980ti GPUs would that same job actually slower while burning more heat and there video recoding has been such a big sales argument for the big Intel chips.

    Actually Handbrake x265 software encodes struggle to reach double digits on 24 threads on the "big" machine: Simply can't beat ASIC power with general purpose compute.

    I guess the Pentium HT variants are better value, but so is a 500cc scooter vs. a Turbo-Hayabusa. And here the difference is less than a set of home delivered pizzas for the family, while this chip will last me a couple of years and the pizza is gone in minutes.
  • Meteor2 - Sunday, February 5, 2017 - link

    Interesting that x265 doesn't scale well with cores. The developers claim to be experts in that area!
  • abufrejoval - Sunday, February 12, 2017 - link

    Sure the Handbrake x265 code will scale with CPU cores, but the video processing unit (VPU) withing the GTX 10x series provides several orders of magnitude better performance at much lower energy budgets. You'd probably need downright silly numbers of CPU cores (hundreds) with Handbrake to draw even in performance and by then you'd be using several orders of magnitude more energy to get it done.

    AFAIK the VPU all the same on all (consumer?) Pascal GPUs and not related to GPU cores, so a 1080 or even a Titan-X may not be any faster than a 1050.

    When I play around with benchmarks I typically have HWinfo running on a separate monitor and it reports the utilization and power budget from all the distinct function blocks in today's CPUs and GPUs.

    Not only does the GTX 1050ti on this system deliver 800-1200FPS when transcoding 1080p material from x264 to x265, but it also leaves CPU and GPU cores rather idle so I actually felt it had relatively little impact on my ability to game or do production work, while it is transcoding at this incredible speed.

    Intel CPUs at least since Sandy Bridge have also sported VPUs and I have tried to them similarly for the MPEG to x264 transitions, but there from my experience compression factor, compression quality and speed have fallen short of Handbrake, so I didn't use them. AFAIK x265 encoding support is still missing on Kaby Lake.

    It just highlights the "identity" crisis of general purpose compute, where even the beefiest CPUs suck on any specific job compared to a fully optimized hardware solution.

    Any specific compute problem shared by a sufficiently high number of users tends to be moved into hardware. That's how GPUs and DSPs came to be and that's how VPUs are now making CPU and GPU based video transcoding obsolete via dedicated function blocks.

    And that explains why my smallest system really feels fastest with just 2 cores.

    The only type of workload where I can still see a significant benefit for the big Xeon cores are things like a full Linux kernel compile. But if the software eco-system there wasn't as bad as it is, incremental compiles would do the job and any CPU since my first 1MHz 8-Bit Z80 has been able to compile faster than I was able to write code (especially with Turbo Pascal).

Log in

Don't have an account? Sign up now